相关文章

MAML: meta learning 论文分析

https://zhuanlan.zhihu.com/p/57864886 一、Meta-Learning 简述 Meta-Learning(即元学习)是最近比较火的研究方向,其思想是learning to learn(学会学习)。Meta-Learning面向的不是学习的结果,而是学习的过程。其学习不是一个直…

元学习1之MAML的回顾

MAML 1.论文地址和代码2.基本概念2.1 举例2.1.1 元学习的目标2.1.2 元学习有三种常见的实现方法 3.MAML3.1 MAML就是用于找参数 θ \theta θ的方法3.2 MAML的基本思路3.3 基本术语3.4 从数据集中抽样的方法3.4 MAML的具体算法流程2.7 MAML二分类过程2.8 MAML的效果 1.论文地址…

MAML++:HOW TO TRAIN YOUR MAML论文精读

论文地址:https://arxiv.org/abs/1810.09502 Abstract MAML是目前通过元学习进行少样本学习的最佳方法之一。MAML简单,优雅和非常强大,然而,它有各种各样的问题,如神经网络结构非常敏感,经常导致不稳定,需…

MAML代码踩坑

参考链接: https://www.zhihu.com/question/266497742 https://zhuanlan.zhihu.com/p/66926599 https://zhuanlan.zhihu.com/p/57864886 目录 加载数据 定义一些基本的参数: 在数据迭代处使用: 图像类型是[1,28,28] 迭代数据 定义了模型…

元学习入门必备:MAML(背景+论文解读+代码分析)

文章目录 前言背景元学习简介元学习问题定义小样本学习(Few shot learning)问题定义元学习/小样本学习基本特征 论文解读AbstractIntroductionMotivationModel-Agnostic Meta-Learning元学习问题设定与模型无关的元学习算法细节伪代码算法实例讲解 实验部分 MAML vs Pre-traini…

MAML论文走读

论文链接:https://arxiv.org/pdf/1703.03400.pdf MAML与前人解决meta learning最大的不同在于,MAML参数的更新靠的是梯度下降而不是一个学到的更新策略(如用RNN学一个参数更新策略)。MAML不需要引入新的参数,也不需要特…

元学习——MAML模型

前言 MAML论文至今已经收获了1万的引用。![[Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.pdf|Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks]] 论文PDF地址:MAML论文PDF 本篇学习借鉴相关文章索引: Mode…

MAML论文阅读

目的: Learning Fast to new tasks. 这是最根本的需求,其实还可以被分解为两部分:learning fast 和adaptation to new tasks. 类似于finetune的目的,meta-learning希望得到一个相对于下游任务的上游模型。更形象的说,…

MAML-Pytorch代码学习分解

一、引言 在学习小样本学习之元学习实现方法中,遇见MAML(模型不可知元学习)算法,通过元学习入门必备:MAML(背景论文解读代码分析)_元学习算法代码-CSDN博客该博客的末尾转到https://zhuanlan.zhihu.com/p/343827171知…

MAML算法详解

引言:MAML是元学习的经典论文,也是基于optimization based meta-learning方法的开山之作,后序很多工作都是follow这篇工作。目前已经有13140的引用,其算法思想很巧妙,值得反复品读。论文链接:http://procee…

MAML学习

仅记录个人学习 观看视频:https://space.bilibili.com/1481711 MAML学习 Meta LearningMAMLMAML的训练过程方法衍生——聚焦在任务上改进MAML方法衍生1:利用任务偏重更新参数Task-Agnostic Meta Learning (CVPR 2019)Difficulty-Aware Meta Learning Tas…

MAML

Paper : Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks Code : official 摘要 作者根据元学习(meta learning)的表达式提出了MAML算法用来进行元知识的梯度下降,使用一阶近似的方法来避免计算损失函数的二阶导,并在小样本学习任务…

Meta Learning:元学习模型MAML和Reptile详解

写在前面 记得研究生一年级的时候,每次开组会讲论文,实验室的师兄师姐经常提到元学习以及MAML这些概念。由于我当时比较懒,也觉得我研究方向不是这个,就没有细想,一知半解,只是知道有这个概念。后来我发现很…

论文笔记之MAML

MAML(Model-Agnostic-Meta-Learning)是Meta-learning(即元学习,又叫Learn-to-Learn)的其中一个类别。有关Meta-learning的理论,可以参考李宏毅教授的B站视频。参考网上博主的一个比较恰当的例子来说明Meta-learning就是:经典的监督学习是让学…

MAML算法详解(元学习)

文章目录 回顾元学习MAML算法MAML和预训练模型的区别数学推导MAML实施细节 总结 回顾元学习 元学习的基本知识参考这篇博客元学习和机器学习的对比 MAML算法 学习初始化参数,所有任务的初始化的参数都是一样的 MAML和预训练模型的区别 MAML使用的是 ϕ …

狗都能看懂的MAML原理讲解和代码实现

Model-Agnostic Meta-Learning - MAML 一、相关概念: 1、meta-leaning meta-leaning指的是元学习,元学习是深度学习的一个分支,一个好的元模型(meta-learner)应该具备对新的、少量的数据做出快速而准确的学习。通俗…

vue3 + ts:使用uuid / Universally Unique Identifier / 通用唯一标识符

一、理解uuid 在 JavaScript 中使用 uuid 库的 v4 方法时,每次调用 uuidv4() 都会生成一个新的、基于随机数的 UUID(Universally Unique Identifier,通用唯一标识符)。这种随机性确保了即使在同一个浏览器会话中,每次…

使用uuid做MySQL主键,被老板,爆怼一顿

前言:在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?本篇博客我们就来分析一下这个问题,探讨一下内部的原因。 一:mysq…

Linux之/etc/fstab文件详解及实践

一、需求说明 使用parted命令完成磁盘分区后会有如下提示。意思就是我们新增了磁盘分区,提醒我们需要更新/etc/fstab文件。Linux系统都是各磁盘或者分区是通过挂载的方式访问的,临时使用的U盘、光盘等我们可以使用mount命令临时挂载,如果是系…

NanoID 了解一下?比 UUID 更好用!

UUID 是软件开发中最常用的通用标识符之一。然而,在过去的几年里,其他的竞品挑战了它的存在。 其中,NanoID 是 UUID 的主要竞争对手之一。 因此,在本文中,我们将展开讨论 NanoID 的功能、它的亮点以及它的局限性&#…