相关文章

Paxos协议详解

Basic-Paxos算法(可以先看后面的实际例子再看前面的具体介绍部分) Paxos算法的目的 Paxos算法的目的是为了解决分布式环境下一致性的问题。 多个节点并发操纵数据,如何保证在读写过程中数据的一致性,并且解决方案要能适应分布式环境下的不可靠…

分布式一致性算法——Paxos 和 Raft 算法

写在前面 本文隶属于专栏《100个问题搞定大数据理论体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢! 本专栏目录结构和参考文献请见100个问题搞定大数据理论体系 I. 简介 介绍Paxos…

图解 Paxos 算法

Paxos 算法由 Leslie Lamport 在 1989 年提出的一个分布式共识算法,Paxos 算法较难理解,本文尝试以图形化方案解释 Paxos 算法。 本文在很大篇幅参考了韩健极客时间的课程《分布式协议与算法》,有兴趣了解韩老师其他课程的同学可以购买来学习下。 Lamport 提出的 Paxos 算…

paxos算法详解以及模拟代码

0 paxos算法解决了什么问题 现在有n个人组成提一个会议,这个会议的目的是为了确定今年的税率,那么每个人都会提出自己认为的今年的合理的税率,为了大家能够达成一致,有了paxos算法。实际里,这个会议就是一个集群。 1…

Paxos学习笔记及图解

本文记录了自己对 Paxos 算法的学习和理解,并对多种分区情况进行了讨论,整理了 Paxos 的执行思路并根据本人实践对其中遇到的问题进行了讲解。但还是可能存在理解不到位或者有纰漏的地方,还希望多多指教。 文章目录 一 从CAP定理到Paxos算法…

科普文:分布式数据一致性协议Paxos

1 什么是Paxos Paxos协议其实说的就是Paxos算法, Paxos算法是基于消息传递且具有高度容错特性的一致性算 法,是目前公认的解决分布式一致性问题最有效的算法之一。 Paxos由 莱斯利兰伯特(Leslie Lamport)于1998年在《The Part-Time Parliament》论文中首次公 开&…

Paxos算法(Basic Paxos 与 Multi-Paxos思想)

目录 Basic Paxos三个角色达成共识的方法对于Basic Paxos的总结 Multi-Paxos领导者优化 Basic Paxos 执行 reference Paxos 算法包含 2 个部分: 1、Basic Paxos : 描述多节点之间如何就某个值达成共识 2、Multi-Paxos : 描述执行多个Basic Pa…

Paxos算法讲解

Paxos算法解决的问题是在一个消息可能会发生延迟、丢失、重复的分布式系统中 如何就某个值达成一致,保证不论发生以上任何异常,都不会破坏值的一致性。 基于一大堆完全不可靠的网络条件下,可靠确定地实现共识一致性的算法 Paxos算法是这样解…

Paxos算法原理和过程解析

我们了解了2PC和3PC之后,我们可以发现,无论是二阶段提交还是三阶段提交都无法彻底解决分布式的一致性问题以及无法解决太过保守及容错性不好。Google Chubby的作者Mike Burrows说过,世上只有一种一致性算法,那就是Paxos&#xff0…

KNN算法理论

1.KNN算法简介 K近邻法(k-nearest neighbor,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用,就是“物以类聚,人以群分”。比如,我们判断一个人的人品,…

sklearn学习之KNN

机器学习之sklearn(knn) 文章目录 前言一、KNN是什么?二、KNN原理三、使用步骤1.引入库以及参数说明2.应用场景(鸢尾花分类) 四、KNN的优缺点五、k临近(KNN)与K-means的区别?1、算法…

KNN(k-nearest neighbor的缩写)最近邻算法原理详解

k-最近邻算法是基于实例的学习方法中最基本的,先介绍基于实例学习的相关概念。 基于实例的学习 已知一系列的训练样例,很多学习方法为目标函数建立起明确的一般化描述;但与此不同,基于实例的学习方法只是简单地把训练样例存储起…

KNN算法实例讲解

KNN算法是什么? 寻找最近的k个数据,推测新数据的分类 算法原理 通用步骤 1.计算距离 2.升序排序 3.取前K个 4.加权平均 K的选取 太小:受个例影响较大,波动很大 大大:导致分类模糊 K选取注意: &…

KNN 算法实现 Iris 数据集分类

文章目录 1 scikit-learn介绍2 scikit-learn常用模块2.1 数据集模块2.2 数据预处理模块2.3 特征提取与选择模块 3 K邻近算法(K-Nearest Neighbor, KNN)介绍4 KNN算法实现Iris数据集的分类 1 scikit-learn介绍 scikit-learn与机器学习的关系: Scikit-learn是基于Py…

最简单的分类算法之一:KNN(原理解析+代码实现)

KNN(K- Nearest Neighbor),即K最邻近算法,是数据挖掘分类技术中最简单的方法之一。简单来说,它是根据“最邻近”这一特征来对样本进行分类。 目录 1、大致了解KNN2、原理分析2.1一些数学知识2.2算法思想 3.代码实现 1、…

一种基于层次分析法的改进KNN算法

说明 由于是第一次写论文,这篇论文只发表在了本科学校的学报上,在2018年7月12号已经上传知网,在知网网址为:一种基于层次分析法的改进KNN算法代码 。之前忙于整理机器学习笔记,而忽略这篇论文的整理。 前言 本篇论文…

KNN算法解决鸢尾花分类案例

KNN算法解决鸢尾花分类案例 本文分别通过KNN底层算法实现和sklearn中的KNeighbors Classifier(K近邻分类模拟)和对3中不同的鸢尾花的分类。 一、K近邻(KNN)算法介绍 二、KNN举例说明 三、KNN举例计算 四、KNN算法实现 五、利用K…

【机器学习】KNN算法实战项目三:金融贷款策略分类

KNN算法实战项目三:金融贷款策略分类 3 金融贷款策略中的KNN分类3.1 模块导入与数据加载3.2 数据EDA3.2.1 数据预处理3.2.2 数据可视化3.2.3 特征工程 3.3 模型创建与应用3.4 模型对比 手动反爬虫: 原博地址 https://blog.csdn.net/lys_828/article/det…

机器学习(KNN二)——案例:鸢尾花数据分类

常见API 这里有我们上篇博客提到的DKTree,还有最基本的KNeighborsClassifier(用于分类) 和 KNeighborsRegressor(用于回归),这里列出常见的参数: 参数KNeighborsClassifier / KNeighborsRegressorweights样本权重,可选参数: unif…

用python实现KNN算法

KNN简介 KNN(K-nearest neighbor),即K近邻算法。当需要表示一个样本(值)的时候,就使用于该样本最接近的K个邻居来决定。KNN即可以用于分类,也可以用于回归。 数据集地址 https://vincentarelbundock.github.io/Rda…